Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Solange M. S. V. Wardell,^a James L. Wardell,^b John N. Low^c and Christopher Glidewell^d*

^aInstituto de Tecnologia em Fármacos, Far-Manguinhos, FIOCRUZ, 21041-250 Rio de Janeiro, RJ, Brazil, ^bInstituto de Química, Departamento de Química Inorgânica, Universidade Federal do Rio de Janeiro, CP 68563, 21945-970 Rio de Janeiro, RJ, Brazil, ^cDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and ^dSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland

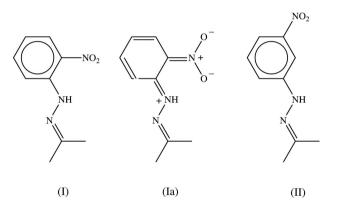
Correspondence e-mail: cg@st-andrews.ac.uk

Key indicators

Single-crystal X-ray study T = 120 KMean σ (C–C) = 0.002 Å R factor = 0.054 wR factor = 0.153 Data-to-parameter ratio = 16.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2007 International Union of Crystallography All rights reserved


Acetone 2-nitrophenylhydrazone

There are no direction-specific interactions between the almost-planar molecules of the title compound, $C_9H_{11}N_3O_2$.

Received 22 January 2007 Accepted 22 January 2007

Comment

We report here the structure of acetone 2-nitrophenylhydrazone, (I) (Fig. 1), whose behaviour differs significantly from that of the isomeric compound acetone 3-nitrophenylhydrazone, (II) (Wardell *et al.*, 2006).

The non-H atoms in the molecule of (I) are virtually coplanar, as shown by the key torsion angles (Table 1). There is a short intermolecular $N-H\cdots O$ hydrogen bond (Table 2), which may assist in controlling the planar conformation. The bond distances (Table 1) show evidence for a significant contribution from the quinonoid form (Ia). In particular, the bonds C3-C4 and C5-C6 are shorter than the remaining bonds in the ring, while C2-N21 is very short for its type and the N-O bonds are long (Allen *et al.*, 1987). In contrast, the bond distances in (II) show no unusual values (Wardell *et al.*, 2006).

Whereas the molecules of (II) are linked into complex sheets by a combination of N-H···O, C-H···O and C-H···N hydrogen bonds, there are no direction-specific intermolecular interactions in the structure of (I). In particular, hydrogen bonds of all types and aromatic π - π stacking interactions are absent.

Experimental

2-Nitrophenylhydrazine (3 mmol) was dissolved in acetone (30 ml) and the solution was heated under reflux for 1 h. The solution was then cooled and excess solvent was removed under reduced pressure. The resulting solid product, (I), was crystallized from ethanol (m.p. 339–341 K).

Crystal data

C₉H₁₁N₃O₂ $M_r = 193.21$ Monoclinic, $P2_1/c$ a = 3.8451 (2) Å b = 11.4926 (8) Å c = 21.3214 (13) Å $\beta = 92.208 (4)^{\circ}$ $V = 941.50 (10) \text{ Å}^3$

Data collection

Bruker Nonius KappaCCD area-
detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
$T_{\min} = 0.971, \ T_{\max} = 0.996$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0854P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.054$	+ 0.2667P]
$wR(F^2) = 0.153$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.06	$(\Delta/\sigma)_{\rm max} < 0.001$
2104 reflections	$\Delta \rho_{\rm max} = 0.24 \text{ e } \text{\AA}^{-3}$
129 parameters	$\Delta \rho_{\rm min} = -0.25 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å, °).

C1-C2	1.417 (2)	C1-N1	1.3637 (17)
C2-C3	1.4027 (19)	N1-N2	1.3799 (17)
C3-C4	1.370 (2)	N2-C7	1.2877 (18)
C4-C5	1.398 (2)	C2-N21	1.4387 (18)
C5-C6	1.3772 (19)	N21-O21	1.2513 (16)
C6-C1	1.4100 (19)	N21-O22	1.2267 (17)
C1-C2-N21-O21	-0.3(2)	C1-N1-N2-C7	175.80 (12)
C1-C2-N21-O22	178.88 (13)	N1-N2-C7-C8	179.80 (12)
C2-C1-N1-N2	-175.52(12)	N1-N2-C7-C9	0.2 (2)

Z = 4

 $D_x = 1.363 \text{ Mg m}^{-3}$

Mo $K\alpha$ radiation

 $\mu = 0.10 \text{ mm}^{-1}$

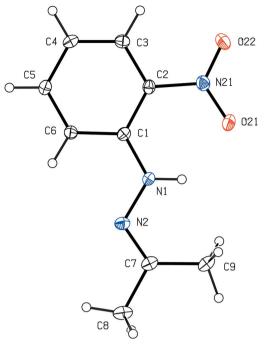
T = 120 (2) K

Needle, orange

 $R_{\rm int} = 0.046$ $\theta_{\rm max} = 27.8^{\circ}$

 $0.40 \times 0.04 \times 0.04$ mm

10829 measured reflections 2104 independent reflections 1738 reflections with $I > 2\sigma(I)$


Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N1-H1O21	0.88	1.97	2.6010 (17)	128

All H atoms were located in a difference map and then treated as riding, with C-H distances of 0.95 or 0.98 Å and N-H distances of 0.88 Å, and with $U_{iso}(H) = kU_{eq}(C,N)$ where k = 1.5 for methyl groups and 1.2 for all other H.

Data collection: COLLECT (Nonius, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: FLIPPER (Oszlányi & Sütő, 2004, 2005; Spek, 2003); program(s)

Figure 1

The molecular structure of compound (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

used to refine structure: OSCAIL (McArdle, 2003) and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

The X-ray data were collected at the EPSRC X-Ray Crystallographic Service, University of Southampton, UK; the authors thank the staff of the Service for all their help and advice. JLW thanks CNPq and FAPERJ for financial support.

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.
- McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.
- Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.
- Oszlányi, G. & Sütő, A. (2004). Acta Cryst. A60, 134-141.
- Oszlányi, G. & Sütő, A. (2005). Acta Cryst. A61, 147-152.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Wardell, S. M. S. V., de Souza, M. V. N., Wardell, J. L., Low, J. N. & Glidewell, C. (2006). Acta Cryst. E62, o2838-o2840.